Periodic Nucleation Solutions of the Real Ginzburg-Landau equation in a Finite Box

نویسندگان

  • Médéric Argentina
  • Orazio Descalzi
  • Enrique Tirapegui
چکیده

In the vicinity of the threshold of a continuous pattern-forming instability a description of the basic periodic solution and its slow modulations is possible by perturbation theory [Newell & Whitehead, 1969; Segel, 1969; Stuart & Di Prima, 1978]. For quasi-one-dimensional, stationary, and periodic patterns formed from an unstructured state through a continuous soft-mode finite-q instability, a description in terms of A(x, t) satisfying the real Ginzburg–Landau equation is as follows

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Bifurcating Vortex Solutions of the Complex Ginzburg-landau Equation

It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2-periodic vortex solutions that have 2n simple zeros (\vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutio...

متن کامل

Periodic Unfolding and Homogenization for the Ginzburg-landau Equation Preliminary Draft

We investigate, on a bounded domain Ω of R with fixed S-valued boundary condition g of degree d > 0, the asymptotic behaviour of solutions uε,δ of a class of Ginzburg-Landau equations driven by two parameter : the usual Ginzburg-Landau parameter, denoted ε, and the scale parameter δ of a geometry provided by a field of 2 × 2 positive definite matrices x → A( δ ). The field R ∋ x → A(x) is of cl...

متن کامل

Exact localized and periodic solutions of the discrete complex Ginzburg–Landau equation

We study, analytically, the discrete complex cubic Ginzburg–Landau (dCCGL) equation. We derive the energy balance equation for the dCCGL and consider various limiting cases. We have found a set of exact solutions which includes as particular cases periodic solutions in terms of elliptic Jacobi functions, bright and dark soliton solutions, and constant magnitude solutions with phase shifts. We h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002